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Abstract
The elastic properties of geomaterials are anomalous. Hysteresis with end point memory, slow
dynamics, and linear variation of the resonance frequency with the strain are only some of
these uncommon features. All these characteristics have been related to a nonclassical nonlinear
elasticity. Chapter 1 introduces two strain regions where the experiments show different elastic
behaviors. At low strain, rocks show their intrinsic nonlinearity until a strain material-dependent
threshold, εth . A transition from linear to classical nonlinear behavior appears in this first region.
For strains beyond εth the experimental data are contaminated by a complex nonequilibrium
dynamics. Memory effects and conditioning complicate the characterization of the intrinsic
nonlinearity of the sample and they do not allow a simple interpretation of the experimental
data to prove the existence of anomalous nonclassical nonlinearity.

Keywords: Classical nonlinearity, conditioning, dynamical experiments, geomaterials, intrin-
sic nonlinearity, memory effects, nonequilibrium dynamics, nonlinearity

1. Introduction

Rocks are complex systems. Their extraordinary elastic properties are the manifesta-
tion of this complexity. The presence of hysteresis with end point memory (Cook and
Hodgson, 1965, Gordon and Davis, 1967), long–time recovery relaxation phenomena
(TenCate and Shankland, 1996, TenCate et al., 2000), and anomalous softening of the
resonance frequency with strain (Johnson et al., 1996) are only some examples of the
uncommon elastic properties of geomaterials. This experimental evidence led us to
define rocks as anomalous nonlinear elastic materials. Several basic questions are still
open about this nonlinearity.

In this chapter some recent experimental results are presented which help to better
understand the nonlinearity of rocks. The focus of this chapter is to show the existence
of a strain threshold, below which these materials show a classical nonlinear behav-
ior, and beyond which complex memory and conditioning effects appear. These two
regions are fundamental for understanding the nonlinear nature of rocks and to de-
fine the intrinsic nonlinear behavior of these materials. The key point is that beyond
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this threshold the experimental data cannot be simply used to prove the existence of
nonclassical behavior due to the presence of nonequilibrium dynamics.

2. Intrinsic Nonlinearity and Conditioning

Most of the measurements of nonlinear effects are performed by resonance bar ex-
periments. A detailed description of this experiment is presented by TenCate et al. in
this book. In this type of experiment the resonance frequency ( fR) dependence on the
external force is analyzed as an indicator of nonlinearity: the system is linear if the
resonance frequency peak does not change with the external force, whereas a change
in fR indicates nonlinearity. There are many materials in nature that exhibit elastic
nonlinearity. For these materials the nonlinearity is shown as a quadratic softening of
the fR increasing the drive amplitude. This nonlinearity, known as classical nonlin-
earity, has been described by Landau and Lifshitz (1998) using a Taylor expansion
of the bar’s displacement in the strain. Instead of a quadratic softening, rocks show
a linear softening with the drive amplitude that was interpreted as an indicator of an
anomalous nonlinearity (Guyer and Johnson, 1999) as shown by Johnson in this book.

In recent works (TenCate et al., 2004; Pasqualini et al., submitted) it was shown that[AQ1]

this shift has to be interpreted carefully because the measurements can be contaminated
by the presence of a nonequilibrium dynamics. The external force can bring the rock
into a nonequilibrium state complicating the dynamical behavior and the interpretation
of the nonclassical behavior. Figure 26.1 shows the effect of the conditioning on the
resonance frequency peak. The peak of the resonance curve is measured at different
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Fig. 26.1. Conditioning effect. The resonance frequency is plotted as a function of strain for Berea. The
peak of the resonance curve is measured at different strains from low strain 10−9up to 10−6, the drive is
then dropped of to the lowest strain. This last value (open dots) for fR is different from the first one (full
dot) as a consequence of conditioning.
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strains from low strain 10−9 up to high strain 10−6, and the external force is then
reduced back to the lowest strain. The last value (open dots in Figure 26.1) for fR is
different from the first one (full dot): the reason for this difference is the conditioning.

The experimental data cannot be analyzed easily due to the presence of this nonequi-
librium dynamics. In order to prevent this contamination, an ad hoc experimental strat-
egy, named “zig–zag,” was developed (see TenCate et al. in this book). This method
consists of the systematical increase of the drive level passing through the up/down
frequency sweeps and then releasing it back to the lowest strain to check if the fR has
changed.

3. Experimental Evidence

3.1 Two Regions

The samples analyzed are two sandstones, Berea and Fontainebleau. During the experi-
ment the bar is driven by a frequency f and the acceleration of the bar end is measured.
In order to compare samples with different length L the acceleration ü is converted into
strain ε, using the convention ε = ü/(4π L f 2). Different resonance curves are built
at constant drive amplitude sweeping the frequency up/down (see Figure 26.2). In this
experiment the frequency stability of the samples is � 0.1 Hz corresponding to a ther-
mal stability of 10 mK.

For each resonance curve the peak and the resonance frequency fR are determined
using a statistical analysis that was developed by D. Higdon of the Los Alamos Na-
tional Laboratory. This analysis is based on a nonparametric Gaussian process to
model the strain as a function of frequency (Banerjee et al., 2004). Using a Markov
Chain Monte Carlo (MCMC) method, a Bayesian estimation for the peak and fR are
calculated together with their uncertainties.

The application of the zig–zag method reveals the presence of two strain regions.
These two regions are divided by a strain threshold εth , below which there is no evi-
dence of conditioning (first region) and beyond which the measures are contaminated
by nonequilibrium dynamics (second region). The threshold εth is a function of the
material and environmental quantities such as temperature, saturation, and so on. The
value of the threshold for Fontainebleau is εth = 2 · 10−7 and εth = 5 · 10−7 for
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Fig. 26.2. Experimental resonance frequency curves for Berea and Fontainebleau.
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Fig. 26.3. Resonance frequency shift for both Berea and Fontainebleau. Dashed lines show the threshold.

Berea. In Figure 26.3, the shift of the resonance frequency for both samples is plot-
ted as a function of strain. In the same figure the two regimes, nonconditioning and
conditioning, are outlined.

In the first region, strain less than εth , there is no evidence of conditioning: Rocks
show a reversible nonlinearity. The resonance frequency shift is repeatable: one can
change how the experiment is carried out and the results do not change. In the absence
of conditioning, the data show the intrinsic nonlinearity and consequently they can be
simply analyzed and interpreted.

On the other hand, in the second region, strain bigger than εth , conditioning, and
nonequilibrium dynamics are present. As a consequence, the experimental results are
history dependent and not repeatable. Without a good understanding of the relationship
between nonlinear dynamics and intrinsic nonlinearity, the data beyond that threshold
cannot be simply interpreted to define intrinsic nonlinearity. Analysis of the data be-
yond εth without considering the nonequilibium contamination can only lead to erro-
neous conclusions.

3.2 First Region: Intrinsic Nonlinearity

Figure 26.4 shows the shift of the resonance frequency versus strain for the first region
where the conditioning is not present. The strain range of this regime is 2 · 10−9 to
2 · 10−7 for Fontainebleau and 2 · 10−9 to 5 · 10−7 for Berea. The resonance frequency
fR and the respective strain are calculated using the MCMC method, which also com-
putes the error bars. Note that the error bars for the strain are too small to be seen in
Figure 26.4 for the strain range used.

The data analysis shows that fR decreases quadratically as we increase the drive
amplitude to the threshold εth . At very low strain, 10−8 to 10−7 , both rocks behave
effectively as a linear elastic system: any change in the fR can be seen in the error
bars. There is no evidence of linear softening, which could lead one to believe in the
presence of anomalous nonlinear behavior. In this region the data are well described
by a classical nonlinear model, where the nonlinear term is represented by a Duffing
nonlinearity (see the next section for model details). Figure 26.4 shows an excellent
agreement between the experimental data and the fit using this theoretical model (solid
lines). The quality factor Q is calculated as the ratio of the resonance frequency and
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Fig. 26.4. First region: resonance frequency shift for Berea and Fontainebleau limited at the strain range
where conditioning and memory effects do not occur. The solid lines are the theoretical fits: a classical
Duffing nonlinear oscillator.

the width of the resonance curve at 1/
√

2 of the maximum, �. It is important to point
out that the uncertainties of the quality factor are larger than the ones of the resonance
frequency peak. Analyzing the resonance curves, it is easy to see that � is constant
within one percent. Therefore, the quality factor behaves as the resonance frequency,
quadratically with the strain.

4. Model

As introduced in the previous section, in the low-strain regime the experimental data
are accurately described by a simple phenomenological dynamical model. This model
consists of a classical damped harmonic potential to which a quartic classical nonlinear
term (Duffing) is added. The equation of motion for the displacement ucan be written
as follows.

ü + �2
0u + 2µu̇ + γ u3 = F sin(ωt), (26.1)

where �0 is the linear resonance frequency, µ is the damping coefficient, and ω = 2π f
is the angular frequency. γ < 0, the nonlinear parameter, leads to a softening nonlin-
earity as the experiments show. The amplitude of the driving force F is proportional
to the amplitude of the voltage applied to the bar in the experiment. The derivation of
an analytical approximation for the solution of Eq. (26.1) is given in detail in Nayfeh
(1981) and leads to the following relation between the displacement amplitude, a, and
the drive amplitude F .

�2
0µ

2a2 + a2
[
(ω − �0)�0 − 3

8
a2γ

]2

= 1

4
F2. (26.2)

The peak of the resonance curve aR , and the drive frequency ωR = 2π fR , at which
the peak occurs, can be easily calculated from Eq. (26.2):

⎧⎨
⎩

ar = F
2µ�0

ωR = 3F2γ

32µ2ω3
0

+ �0.
(26.3)
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Fig. 26.5. First region: resonance frequency curve for Berea and Fontainebleau limited to the strain range
where conditioning and memory effects do not occur. Solid lines are the theoretical model, open circles
represent the experimental data, and full dots are the resonance frequency peaks calculated using MCMC.

The previous equation can be written in terms of the effective strain ε and the reso-
nance frequency fR as

fR = 3L2γ

16π3�0
ε2 + �0

2π
. (26.4)

Thus, in agreement with the measured data, the model predicts that the resonance fre-
quency softens quadratically with the amplitude F , which is proportional to the strain
amplitude. In Figure 26.4 the experimental data are fitted using the second equation
in (26.3). The fitting parameters, �0 and γ , are determined for both samples: for the
Fontainebleau sample �0 = 7262.8 rad/s, γ = −7.6 × 1019 m−2 s−2, and for the
Berea sample, �0 = 17375.7 rad/s, γ = −5.3 × 1019 m−2 s−2. Once the parameters
�0 and γ are fixed as just described, the resonance curves are reconstructed and com-
pared with the experimental resonance curves in Figure 26.5. Both Figures 26.4 and
26.5 show an excellent agreement between theoretical prediction and measured data.
The model also predicts that the width of the resonance curve is independent of the
drive amplitude. Its theoretical value � = 2µ is in agreement with the experimental
evidence.

5. Conclusions

The main idea presented in this chapter is that we need to be careful interpreting the
experimental data to provide a basis for the existence of nonclassical behavior. Two
strain regions have been delineated by a strain threshold, εth , which is material and
environment dependent. The one at low strain is free of conditioning and memory
effects and as a consequence the experiment is repeatable. In the second region the
external force drives the sample into a new nonequilibrium state. Then the resonance
frequency shift is not reversible anymore. Meanwhile in the first region the rock shows
its intrinsic nonlinearity and the measured data can be simply interpreted; in the second
region the data contaminated by the nonequilibrium dynamics do not have a simple
interpretation.
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Limiting the analysis to the first region, it has been found that rocks do not show
a nonclassical nonlinearity as it was claimed in previous works (Smith and TenCate,
2000, Guyer et al., 1999). A classical Duffing nonlinearity is enough to capture the
dynamical behavior in this region. A detailed explanation about the disagreement with
previous works can be found in Pasqualini (submitted). Anomalous features can be [AQ2]

seen only in the region where the nonequilibrium dynamics contaminates the intrinsic
nonlinearity and one cannot simply interpret this behavior as a sign of nonclassical
nonlinearity in rocks.

As a consequence of this experimental evidence it is clear that we need a new theory
that combines the intrinsic nonlinearity of the materials and nonequilibrium dynamics.
We cannot speak about nonclassical nonlinearity in rocks until the fundamental rela-
tionship between intrinsic nonlinearity and nonequilibrium dynamics is understood.
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